Microarray test to anlyse the role of estrogen in breast cancer

Two critical characteristics of breast cancer that are important to treatment can be identified by measuring gene expression in the tumor, a research team led by scientists at The University of Texas M. D. Anderson Cancer Center reports in Lancet Oncology online.

Researchers developed and validated a new genomic microarray test that identifies whether a tumor’s growth is fueled by the female hormone estrogen and the role of a growth factor receptor known as HER-2 that makes a tumor vulnerable to a specific drug. The status of these factors is now determined by pathology tests.

About 70 percent of breast cancers are estrogen-receptor positive and another 15 to 25 percent are human epidermal growth factor receptor-2 (HER-2) positive. Each receptor status requires different types of treatment.

Read the complete article that talkes about the revolutionary test that promises to chage the way cancer is treated

http://www.huliq.com/11047/er-and-her-2-status-of-breast-tumors 

Hormone-replacement therapy influences gene expression profiles and is associated with breast-cancer prognosis: a cohort study

source : http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1555602

 

Postmenopausal hormone-replacement therapy (HRT) increases breast-cancer risk. The influence of HRT on the biology of the primary tumor, however, is not well understood.

 

We obtained breast-cancer gene expression profiles using Affymetrix human genome U133A arrays. We examined the relationship between HRT-regulated gene profiles, tumor characteristics, and recurrence-free survival in 72 postmenopausal women.

DNA microarray–based analysis may be useful for assessing the risks and benefits of hormone therapy

Hormone-replacement therapy influences gene expression profiles and is associated with breast-cancer prognosis. The US FDa has apprved use of two new microarrays for clinical decision making. The US Food and Drug Administration (FDA) encourages the development of new technologies such as microarrays which may improve and streamline assessments of safety and the effectiveness of medical products for the benefit of public health. The FDA anticipates that these new technologies may offer the potential for more effective approaches to medical treatment and disease prevention and management. One of the new application for microarrays apart from use in cancer treatment could be in Hormone replacement therapy. A study has been publoished using microarrays to identify modifications in the gene expression profile of the ocular posterior segment in ovariectomized (OVX) mice with and without substitutive estradiol therapy. some of the other studies can be viewd at

http://www.biomedcentral.com/1741-7015/4/16

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1555602