OneOncology’s online sales with reverse auctions in Cancer Medications

A new cancer-drug distribution system that aims to cut drug costs for community oncology practices around the country is being launched by OneOncology Inc., of Orlando, Fla., which started its Web-based system

In a challenge to the status quo of the drug-distribution business, OneOncology plans to conduct periodic online “reverse auctions.” Wholesale-drug distributors would bid on the opportunity to fill product orders pooled from hundreds of community oncology clinics around the country. OneOncology thinks this will give smaller clinics access to lower prices than they get now, according to Chief Executive
Steven Kirchof. Under the current system, small practices typically have longstanding relationships with distributors.
“It threatens the existing status quo for companies like Oncology Supply,” said Kirchof, a former executive with International Business Machines Corp.’s ( IBM) healthcare unit. “I believe that most of the distributors will come and play, and probably play very aggressively.”

Transplant Patients Could Live Free of Anti-Rejection Drugs

Scientists from the Lucile Packard Childrens Hospital and the Stanford University School of Medicine have identified a pattern of gene expression shared by a small group of patients who beat the odds and remained healthy for years without medication, after undergoing Organ transplant.

The findings made by Minnie Sarwal, MD, PhD, a pediatric nephrologist at Packard Children’s is a major advantage in organ transplantation treatment. Transplant recipients who share the same pattern of genes but are still on conventional medication may be able to reduce or eliminate their lifelong dependence on immunosuppressive drugs. The study may also help physicians determine how best to induce acceptance, or tolerance, of donor organs in all transplant patients, regardless of their gene expression profiles.

Although the anti-rejection medications, known as immunosuppressants, tamp down the immune system enough to permit lifesaving organ transplants, their benefits come at a price. They also quash the bodys natural response to dangerous invaders, such as bacteria and viruses, and to rogue cancer cells. Transplant physicians prescribing immunosuppressants to their patients walk a fine line between avoiding organ rejection and increasing the risk of infection and cancer

The researchers used microarray, or gene chip, technology to compare gene expression patterns in blood samples from 16 healthy volunteers with those from three groups of adult kidney transplant recipients from the United States, Canada and France

Genetically Guided Treatment For Cancer

Two critical characteristics of breast cancer that are important to treatment can be identified by measuring gene expression in the tumor, a research team led by scientists at The University of Texas M. D. Anderson Cancer Center reports in Lancet Oncology online.

Researchers developed and validated a new genomic microarray test that identifies whether a tumor’s growth is fueled by the female hormone estrogen and the role of a growth factor receptor known as HER-2 that makes a tumor vulnerable to a specific drug.

“This is one important step towards personalized diagnosis and treatment planning based on an integrated genomic test of an individual tumor,” said senior author W. Fraser Symmans, M.D., associate professor in the M. D. Anderson Department of Pathology.

The Lancet Oncology paper results are the latest in an effort by the research team to develop a single test to quickly and efficiently determine the characteristics and vulnerabilities of a patient’s breast cancer and ultimately to guide treatment.

About 70 percent of breast cancers are estrogen-receptor positive and another 15 to 25 percent are human epidermal growth factor receptor-2 (HER-2) positive. Each receptor status requires different types of treatment.

“This moves us closer to developing an integrated single genomic test that could estimate the risk of cancer relapse after surgery, determine the ER and HER2 receptor status, and also gauge the sensitivity of the tumor to hormone therapy and chemotherapy,” says Lajos Pusztai, M.D., Ph.D., associate professor in the M. D. Anderson Department of Breast Medical Oncology, and team leader with Symmans.

Last fall, the group published a study showing that a genomic microarray test can also predict a patient’s response to chemotherapy. They also presented a paper in December showing that another genomic index predicts how an ER-positive patient will respond to hormonal therapy.

The study was funded by the National Cancer Institute, the Breast Cancer Research Foundation and the Goodwin Foundation.

Co-authors with Symmans and Pusztai are: first author Yun Gong, M.D., and Nour Sneige, M.D., of the M. D. Anderson Department of Pathology; Kai Yan, Keith Anderson, and Kenneth Hess, of the M. D. Anderson Department of Biostatistics; Feng Lin, M.D., Vicente Valero, M.D., Daniel Booser, M.D., Jaime Mejia, M.D., and Gabriel Hortobagyi, M.D., of the M. D. Anderson Department of Breast Medical Oncology; Christos Sotiriou, M.D., Ph.D., Institut Jules Bordet, Brussels, Belgium; Fabrice Andre, M.D., of Institut Gustave Roussy, Villejuif, France; Frankie Holmes, M.D., John Pippen Jr., M.D., and Svetislava Vukelja, M.D., of U.S. Oncology-Texas Oncology; Henry Gomez, M.D., of the Instituto Nacional de Enfermedades Neoplasicas, Lima, Peru; and Luis Barajas, M.D., Departmento de Ginecologia Oncologica, Instituto Mexicano del Seguro Social, Guadalajara, Mexico.

Contact: Scott Merville
University of Texas M. D. Anderson Cancer Center

A new twist on DNA-dynamic quality of epigenetics

What makes you different from everyone else on the planet may have less to do with the spelling of your genetic code than with a scattering of chemical “tags” that, like censor’s marks, render some of your genes unreadable.The code itself, after all, is 99.9 percent identical in all of us, so these peripheral elements – referred to as epigenetics – offer a plausible reason human beings come in such a variety of shapes and sizes.

As one recent paper suggested, epigenetics can explain why identical twins don’t always look identical, especially as they get older.

There’s a dynamic quality to epigenetics. Over your lifetime new chemical tags can stick to previously active genes, thus turning them off, while tags affixed from birth can occasionally fall off, activating genes that are meant to be disabled. A growing number of researchers are connecting such epigenetic shifts to cancer.

The good news is such changes are potentially reversible, says Frank Rauscher, a professor at the Wistar Institute. “For therapeutics, manipulating the epigenome is the way to go.”

Unlike genetic mutations, which permanently scramble a cell’s genetic code, epigenetic tags leave the underlying code intact.

“The old dogma was that cancer was caused by DNA damage and gene mutations,” says Jean-Pierre Issa, a researcher from the M.D. Anderson Cancer Center. But a closer look showed that cancer cells accumulate a combination of spelling errors in the DNA and inappropriate or missing epigenetic tags, he says. “This has led to a rethinking of environmental carcinogens and how diet could affect cancer and so on.”

Full article is available at http://www.kansascity.com/mld/kansascity/news/nation/16713996.htm 

NYIT Professor Discovers Next Generation of DNA and RNA Microarrays brings hopes of personalized medicine

A novel invention developed by a scientist from New York Institute of Technology (NYIT) could revolutionize biological and clinical research and may lead to treatments for cancer, AIDS, Alzheimer’s, diabetes, and genetic and infectious diseases.

The invention allows the immobilisation of intact. double-stranded, multi-stranded or alternative DNA or RNA and has the potential to revolutionise biological and clinical research by allowing scientists to duplicate the cell environment and experiment with human, bacterial and viral genes.

Since the discovery of DNA, biologists have worked to unlock the secrets of the human cell.

Scientist Dr. Claude E. Gagna, Ph.D., an associate professor at NYIT’s School of Health Professions, Behavioral and Life Sciences, discovered how to immobilize intact double-stranded (ds-), multi-stranded or alternative DNA and RNA on one microarray. This immobilization allows scientists to duplicate the environment of a cell, and study, examine and experiment with human, bacterial and viral genes. This invention provides the methodology to analyze more than 150,000 non-denatured genes.

The “Gagna/NYIT Multi-Stranded and Alternative DNA, RNA and Plasmid Microarray,” has been patented (#6,936,461) in the United States and is pending in Europe and Asia. Gagna’s discovery will help scientists understand how transitions in DNA structure regulate gene expression (B-DNA to Z-DNA), and how DNA-protein, and DNA-drug interactions regulate genes. The breakthrough can aid in genetic screening, clinical diagnosis, forensics, DNA synthesis-sequencing and biodefense.

“This patent represents a leap forward from conventional DNA microarrays that use hybridisation,” said Dr Gagna, associate professor of the New York Institute of Technology.

This will help pharmaceutical companies produce new classes of drugs that target genes, with fewer side effects,” Dr Gagna continued.

“It will lower the cost and increase the speed of drug discovery, saving millions of dollars.”

Since the invention of the DNA microarray in 1991, the technology has become one of the most powerful research tools for drug discovery research allowing scientist to perform thousands of experiments with incredible accuracy and speed. According to MarketResearch.com sales of DNA microarrays are expected to be higher than $5.3bn (€ bn) by 2009.

The technology hinges around a novel surface that increases the adherence of DNA to the microarray so that any type of nucleic acid can be anchored, unlike conventional arrays that allow only single-stranded DNA to be immobilised.

Additionally, Gagna has developed a novel surface that increases the adherence of the DNA to the microarray so that any type of nucleic acid can be anchored. Unlike conventional microarrays, which immobilize single-stranded DNA, scientists will now be able to “secure intact, non-denatured, unaltered ds-DNA, triplex-, quadruplex-, or pentaplex DNA onto the microarray,” says Gagna. “With this technology, one day we will have tailor-made molecular medicine for patients.”

“With this technology, one day we will have tailor-made molecular medicine for patients,” said Dr Gagna.

and sure the news site are buzzing with the discovery

read more about the research and the original article details at

Dr Gagna, associate professor of the New York Institute of Technology. and also at www.nyit.edu/dnamicroarrays


Microarray test to anlyse the role of estrogen in breast cancer

Two critical characteristics of breast cancer that are important to treatment can be identified by measuring gene expression in the tumor, a research team led by scientists at The University of Texas M. D. Anderson Cancer Center reports in Lancet Oncology online.

Researchers developed and validated a new genomic microarray test that identifies whether a tumor’s growth is fueled by the female hormone estrogen and the role of a growth factor receptor known as HER-2 that makes a tumor vulnerable to a specific drug. The status of these factors is now determined by pathology tests.

About 70 percent of breast cancers are estrogen-receptor positive and another 15 to 25 percent are human epidermal growth factor receptor-2 (HER-2) positive. Each receptor status requires different types of treatment.

Read the complete article that talkes about the revolutionary test that promises to chage the way cancer is treated

http://www.huliq.com/11047/er-and-her-2-status-of-breast-tumors