Microarray based DRUG DISCOVERY and CLINICAL DIAGNOSIS and biosensor designed to identify viruses

 Prof. David Dandy of Colorado State University chemical and biological engineering has proven that called microarray assays can be used for biomedical disease and drug screening assays could rapidly increase drug discovery,

Although not ready for hospital or office use, microarrays represent a novel miniaturized multi-spot diagnostic format that has huge potential for patient diagnosis if found reliable and approved.

Smaller is often better, according to a new scientific study that appears this week in the Proceedings of the National Academy of Sciences by Professor David Dandy, Dr. David Dandyhead of the Department of Chemical and Biological Engineering at Colorado State. Dandy co-wrote the paper with David Grainger, a former chemistry professor at Colorado State who now is chair of the Department of Pharmaceutics & Pharmaceutical Chemistry at the University of Utah.

The study was funded by a multi-year, $2.5 million grant from the National Institutes of Health.

“This work is extremely useful from an industrial perspective,” said Michael Lochhead, chief scientist at Accelr8 Technology Corp., a Denver-based developer of innovative materials and instrumentation for advanced applications in medical instrumentation, basic research, drug discovery, and bio-detection.

The critical importance of this work is illustrated by the fact that, to date, a single microarray-based test has been approved by the FDA for clinical use.

According to Roche, the manufacturer of this diagnostic microarray, “This test analyzes a patient’s Cytochrome P450 2D6 and 2C19 genotypes from genomic DNA extracted from a blood sample. Test results will allow physicians to consider unique genetic information from patients in selecting medications and doses of medications for a wide variety of common conditions such as cardiac diseases, pain and cancer.”

 

 

Whole Genome microarray @ 99 USD

Ocimum Biosolutions is offering whole genome microarrays at 99 USD as part of its 6th year celebration, The limited period marketing offer is available for many cataloge whole genome microarrays at 99 USD irrespective of the number of microarrays ordered.

The company now offers one of the best cost effective microarray prices in the market

To get more information on microarray price please contact Ocimum Biosolutions web  http://www.ocimumbio.com/web/promo/array99.asp


 

 

Theranostics-Genetics Testing for Clinical Diagnostics for Personalized Medicine

Theranostics is the term used to describe the proposed process of diagnostic therapy for individual patients – to test them for possible reaction to taking a new medication and to tailor a treatment for them based on the test results or in plain english Personalized Medicine.

Personalized medicine is the use of detailed information about a patient’s genotype or level of gene expression and a patient’s clinical data in order to select a medication, therapy or preventative measure that is particularly suited to that patient at the time of administration

The test results are used to tailor treatment, usually with a drug that targets a particular gene or protein.

Seen the movie Gattaca it shows glipses of the what to come.

This method is looked as the possible end result of new advances made in Pharmacogenomics, Drug Discovery using Genetics, Molecular Biology and Microarray chips technology

The technology is set to grow by leaps as new companies are introducing new microarray chip which are getting cheaper day by day

Already there are microarraychips approved by FDA for clinical diagnostics

Defra funds team to build microarray biochip to detect disease outbreaks

A single test for more than 600 deadly viruses is being developed by a group of Defra-funded scientists, offering the possibility of spotting a disease outbreak in hours rather than days.

The microarray, which is being led by the Central Science Laboratory near York, with £1.5m funding from Defra, will detect viruses that affect humans, animals, plants, fish and bees including avian influenza, rabies and foot and mouth.

Animal and plant researchers will be able to use the same test to identify many viruses, saving time and resources in the event of an outbreak It will also help to quickly identify when a virus has jumped from one species to another and when new strains of existing disease emerge in the future.

its not so much of junk DNA- University of Oxford Scientists discoveres Cancer cure with it

 Junk DNA is not junk after all

Recently, scientists at the University of Oxford have discovered that ‘junk’ genetic material can switch off cancer tumours, preventing them from growing.

By using RNA to switch off a gene involved in controlling cell division, Oxford University scientists may have found a role for RNA in developing new cancer therapies. RNA is the mirror image of DNA, and is used to pass on instructions to the cell to build the proteins that run every body function.

The Human Genome Project found that human DNA carries approximately 34,000 genes that produce proteins. The remaining majority of the genome constituted what was considered to be junk DNA as it had no obvious function. However, this is set to change.

‘‘There has been a quiet revolution taking place in biology in past few years,’’ said Dr Alexandre Akoulitchev, a Senior Research Fellow at Oxford. ‘‘Scientists have begun to see ‘junk’ DNA as having an important function. The variety of RNA types produced from this so called ‘junk’ is staggering and the functional implications are huge.”

Akoulitchev studied the RNA that regulates a gene called DHFR. This gene produces an enzyme that controls the production of molecules called tetrahydrofolate and thymine that cells need to divide rapidly.

“Switching off the DHFR gene could help prevent ordinary cells from developing into cancerous tumour cells, by slowing down their replication. In fact, one of the first anti-cancer drugs, Methotrexate, acts by binding and inhibiting the enzyme produced by this gene. Targeting the gene itself would cut the enzyme out of the picture altogether. Understanding how we can use RNA to switch off or inhibit DHFR and other genes may have important therapeutic implications for developing new anti-cancer treatments.”

This research was funded by The Wellcome Trust and the Medical Research Council.

Original paper: Repression of the human dihydrofolate reductase gene by a non-coding interfering transcript was published in Nature on 22nd January 2006.

Microarray based Bio Detection Technologies

DNA microarray detection of antimicrobial resistance genes in diverse bacteria

Study published at http://cat.inist.fr/?aModele=afficheN&cpsidt=17459830
High throughput genotyping is essential for studying the spread of multiple antimicrobial resistance. A test oligonucleotide microarray designed to detect 94 antimicrobial resistance genes was constructed and successfully used to identify antimicrobial resistance genes in control strains. The microarray was then used to assay 51 distantly related bacteria, including Gram-negative and Gram-positive isolates, resulting in the identification of 61 different antimicrobial resistance genes in these bacteria. These results were consistent with their known gene content and resistance phenotypes. Microarray results were confirmed by polymerase chain reaction and Southern blot analysis. These results demonstrate that this approach could be used to construct a microarray to detect all sequenced antimicrobial resistance genes in nearly all bacteria.

Genetically Guided Treatment For Cancer

Two critical characteristics of breast cancer that are important to treatment can be identified by measuring gene expression in the tumor, a research team led by scientists at The University of Texas M. D. Anderson Cancer Center reports in Lancet Oncology online.

Researchers developed and validated a new genomic microarray test that identifies whether a tumor’s growth is fueled by the female hormone estrogen and the role of a growth factor receptor known as HER-2 that makes a tumor vulnerable to a specific drug.

“This is one important step towards personalized diagnosis and treatment planning based on an integrated genomic test of an individual tumor,” said senior author W. Fraser Symmans, M.D., associate professor in the M. D. Anderson Department of Pathology.

The Lancet Oncology paper results are the latest in an effort by the research team to develop a single test to quickly and efficiently determine the characteristics and vulnerabilities of a patient’s breast cancer and ultimately to guide treatment.

About 70 percent of breast cancers are estrogen-receptor positive and another 15 to 25 percent are human epidermal growth factor receptor-2 (HER-2) positive. Each receptor status requires different types of treatment.

“This moves us closer to developing an integrated single genomic test that could estimate the risk of cancer relapse after surgery, determine the ER and HER2 receptor status, and also gauge the sensitivity of the tumor to hormone therapy and chemotherapy,” says Lajos Pusztai, M.D., Ph.D., associate professor in the M. D. Anderson Department of Breast Medical Oncology, and team leader with Symmans.

Last fall, the group published a study showing that a genomic microarray test can also predict a patient’s response to chemotherapy. They also presented a paper in December showing that another genomic index predicts how an ER-positive patient will respond to hormonal therapy.

The study was funded by the National Cancer Institute, the Breast Cancer Research Foundation and the Goodwin Foundation.

Co-authors with Symmans and Pusztai are: first author Yun Gong, M.D., and Nour Sneige, M.D., of the M. D. Anderson Department of Pathology; Kai Yan, Keith Anderson, and Kenneth Hess, of the M. D. Anderson Department of Biostatistics; Feng Lin, M.D., Vicente Valero, M.D., Daniel Booser, M.D., Jaime Mejia, M.D., and Gabriel Hortobagyi, M.D., of the M. D. Anderson Department of Breast Medical Oncology; Christos Sotiriou, M.D., Ph.D., Institut Jules Bordet, Brussels, Belgium; Fabrice Andre, M.D., of Institut Gustave Roussy, Villejuif, France; Frankie Holmes, M.D., John Pippen Jr., M.D., and Svetislava Vukelja, M.D., of U.S. Oncology-Texas Oncology; Henry Gomez, M.D., of the Instituto Nacional de Enfermedades Neoplasicas, Lima, Peru; and Luis Barajas, M.D., Departmento de Ginecologia Oncologica, Instituto Mexicano del Seguro Social, Guadalajara, Mexico.

Contact: Scott Merville
University of Texas M. D. Anderson Cancer Center

%d bloggers like this: