Transplant Patients Could Live Free of Anti-Rejection Drugs

Scientists from the Lucile Packard Childrens Hospital and the Stanford University School of Medicine have identified a pattern of gene expression shared by a small group of patients who beat the odds and remained healthy for years without medication, after undergoing Organ transplant.

The findings made by Minnie Sarwal, MD, PhD, a pediatric nephrologist at Packard Children’s is a major advantage in organ transplantation treatment. Transplant recipients who share the same pattern of genes but are still on conventional medication may be able to reduce or eliminate their lifelong dependence on immunosuppressive drugs. The study may also help physicians determine how best to induce acceptance, or tolerance, of donor organs in all transplant patients, regardless of their gene expression profiles.

Although the anti-rejection medications, known as immunosuppressants, tamp down the immune system enough to permit lifesaving organ transplants, their benefits come at a price. They also quash the bodys natural response to dangerous invaders, such as bacteria and viruses, and to rogue cancer cells. Transplant physicians prescribing immunosuppressants to their patients walk a fine line between avoiding organ rejection and increasing the risk of infection and cancer

The researchers used microarray, or gene chip, technology to compare gene expression patterns in blood samples from 16 healthy volunteers with those from three groups of adult kidney transplant recipients from the United States, Canada and France

its not so much of junk DNA- University of Oxford Scientists discoveres Cancer cure with it

 Junk DNA is not junk after all

Recently, scientists at the University of Oxford have discovered that ‘junk’ genetic material can switch off cancer tumours, preventing them from growing.

By using RNA to switch off a gene involved in controlling cell division, Oxford University scientists may have found a role for RNA in developing new cancer therapies. RNA is the mirror image of DNA, and is used to pass on instructions to the cell to build the proteins that run every body function.

The Human Genome Project found that human DNA carries approximately 34,000 genes that produce proteins. The remaining majority of the genome constituted what was considered to be junk DNA as it had no obvious function. However, this is set to change.

‘‘There has been a quiet revolution taking place in biology in past few years,’’ said Dr Alexandre Akoulitchev, a Senior Research Fellow at Oxford. ‘‘Scientists have begun to see ‘junk’ DNA as having an important function. The variety of RNA types produced from this so called ‘junk’ is staggering and the functional implications are huge.”

Akoulitchev studied the RNA that regulates a gene called DHFR. This gene produces an enzyme that controls the production of molecules called tetrahydrofolate and thymine that cells need to divide rapidly.

“Switching off the DHFR gene could help prevent ordinary cells from developing into cancerous tumour cells, by slowing down their replication. In fact, one of the first anti-cancer drugs, Methotrexate, acts by binding and inhibiting the enzyme produced by this gene. Targeting the gene itself would cut the enzyme out of the picture altogether. Understanding how we can use RNA to switch off or inhibit DHFR and other genes may have important therapeutic implications for developing new anti-cancer treatments.”

This research was funded by The Wellcome Trust and the Medical Research Council.

Original paper: Repression of the human dihydrofolate reductase gene by a non-coding interfering transcript was published in Nature on 22nd January 2006.

The Insider -Code inside Codes : Scientists Discover Parallel Codes in Genes

Researchers from The Weizmann Institute of Science report the discovery of two new properties of the genetic code. Their work, which appears online in Genome Research, shows that the genetic code—used by organisms as diverse as reef coral, termites, and humans—is nearly optimal for encoding signals of any length in parallel to sequences that code for proteins. In addition, they report that the genetic code is organized so efficiently that when the cellular machinery misses a beat during protein synthesis, the process is promptly halted before energy and resources are wasted.

DNA sequences that code for proteins need to convey, in addition to the protein-coding information, several different signals at the same time. These “parallel codes” include binding sequences for regulatory and structural proteins, signals for splicing, and RNA secondary structure. Here, we show that the universal genetic code can efficiently carry arbitrary parallel codes much better than the vast majority of other possible genetic codes. This property is related to the identity of the stop codons. We find that the ability to support parallel codes is strongly tied to another useful property of the genetic code—minimization of the effects of frame-shift translation errors. Whereas many of the known regulatory codes reside in nontranslated regions of the genome, the present findings suggest that protein-coding regions can readily carry abundant additional information.

“Our findings open the possibility that genes can carry additional, currently unknown codes,” explains Dr. Uri Alon, principal investigator on the project. “These findings point at possible selection forces that may have shaped the universal genetic code.”

The genetic code consists of 61 codons—tri-nucleotide sequences of DNA—that encode 20 amino acids, the building blocks of proteins. In addition, three codons signal the cellular machinery to stop protein synthesis after a full-length protein is built.

While the best-known function of genes is to code for proteins, the DNA sequences of genes also harbor signals for folding, organization, regulation, and splicing. These DNA sequences are typically a bit longer: from four to 150 or more nucleotides in length.

 

NYIT Professor Discovers Next Generation of DNA and RNA Microarrays brings hopes of personalized medicine

A novel invention developed by a scientist from New York Institute of Technology (NYIT) could revolutionize biological and clinical research and may lead to treatments for cancer, AIDS, Alzheimer’s, diabetes, and genetic and infectious diseases.

The invention allows the immobilisation of intact. double-stranded, multi-stranded or alternative DNA or RNA and has the potential to revolutionise biological and clinical research by allowing scientists to duplicate the cell environment and experiment with human, bacterial and viral genes.

Since the discovery of DNA, biologists have worked to unlock the secrets of the human cell.

Scientist Dr. Claude E. Gagna, Ph.D., an associate professor at NYIT’s School of Health Professions, Behavioral and Life Sciences, discovered how to immobilize intact double-stranded (ds-), multi-stranded or alternative DNA and RNA on one microarray. This immobilization allows scientists to duplicate the environment of a cell, and study, examine and experiment with human, bacterial and viral genes. This invention provides the methodology to analyze more than 150,000 non-denatured genes.

The “Gagna/NYIT Multi-Stranded and Alternative DNA, RNA and Plasmid Microarray,” has been patented (#6,936,461) in the United States and is pending in Europe and Asia. Gagna’s discovery will help scientists understand how transitions in DNA structure regulate gene expression (B-DNA to Z-DNA), and how DNA-protein, and DNA-drug interactions regulate genes. The breakthrough can aid in genetic screening, clinical diagnosis, forensics, DNA synthesis-sequencing and biodefense.

“This patent represents a leap forward from conventional DNA microarrays that use hybridisation,” said Dr Gagna, associate professor of the New York Institute of Technology.

This will help pharmaceutical companies produce new classes of drugs that target genes, with fewer side effects,” Dr Gagna continued.

“It will lower the cost and increase the speed of drug discovery, saving millions of dollars.”

Since the invention of the DNA microarray in 1991, the technology has become one of the most powerful research tools for drug discovery research allowing scientist to perform thousands of experiments with incredible accuracy and speed. According to MarketResearch.com sales of DNA microarrays are expected to be higher than $5.3bn (€ bn) by 2009.

The technology hinges around a novel surface that increases the adherence of DNA to the microarray so that any type of nucleic acid can be anchored, unlike conventional arrays that allow only single-stranded DNA to be immobilised.

Additionally, Gagna has developed a novel surface that increases the adherence of the DNA to the microarray so that any type of nucleic acid can be anchored. Unlike conventional microarrays, which immobilize single-stranded DNA, scientists will now be able to “secure intact, non-denatured, unaltered ds-DNA, triplex-, quadruplex-, or pentaplex DNA onto the microarray,” says Gagna. “With this technology, one day we will have tailor-made molecular medicine for patients.”

“With this technology, one day we will have tailor-made molecular medicine for patients,” said Dr Gagna.

and sure the news site are buzzing with the discovery

read more about the research and the original article details at

Dr Gagna, associate professor of the New York Institute of Technology. and also at www.nyit.edu/dnamicroarrays


%d bloggers like this: