New non-parametric analyis algorithm for Detecting Differentially Expressed Genes with Replicated Microarray Data

Previous nonparametric statistical methods on constructing the test and null statistics require having at least 4 arrays under each condition. In this paper, we provide an improved method of constructing the test and null statistics which only requires 2 arrays under one condition if the number of arrays under the other condition is at least 3. The conventional testing method defines the rejection region by controlling the probability of Type I error. In this paper, we propose to determine the critical values (or the cut-off points) of the rejection region by directly controlling the false discovery rate. Simulations were carried out to compare the performance of our proposed method with several existing methods. Finally, our proposed method is applied to the rat data of Pan et al. (2003). It is seen from both simulations and the rat data that our method has lower false discovery rates than those from the significance analysis of microarray (SAM) method of Tusher et al. (2001) and the mixture model method (MMM)of Pan et al. (2003).

study published by

Shunpu Zhang (2006) “An Improved Nonparametric Approach for Detecting Differentially Expressed Genes with Replicated Microarray Data,” Statistical Applications in Genetics and Molecular Biology: Vol. 5 : Iss. 1, Article 30.
Available at: http://www.bepress.com/sagmb/vol5/iss1/art30

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: